
Page | 1
ScriptX

ScriptX – A Programmer’s Reference Guide
Cross-Section Scripting Language for Civil Site Design

Contents

Introduction to ScriptX .. 2

ScriptX is a bespoke scripting language within Civil Site Design, enabling users to craft

custom scripts for the modification and manipulation of cross sections. 2

Getting Started ... 3

Language Basics .. 4

UI .. 6

Control Structures ... 8

Civil Site Design Object Properties .. 10

Commands ... 15

Known Variables ... 18

Examples ... 19

Information From the Developer ... 21

Page | 2
ScriptX

Introduction to ScriptX

ScriptX is a bespoke scripting language within Civil Site Design, enabling users to craft

custom scripts for the modification and manipulation of cross sections.

Through the Variations section in the Design Data Form, users can integrate ScriptX scripts

into their workflows. These scripts can work in concert with other standard Variations,

although it is crucial to keep in mind the significance of the operation sequence.

What makes ScriptX a useful tool for your toolkit?

ScriptX shines by providing the ability to incorporate logic operations into cross-section

editing. Consider a scenario where there's a variation that widens a code to match the

alignment. However, what if you need this widening to happen only under specific

conditions? Or, what if you want to couple the widening with an increase in the code's

offset? This level of nuanced control is exactly what ScriptX empowers you with.

A ScriptX script is incorporated into the Design Data Form by specifying a chainage range.

The script is applied to each section within the chainage range individually, processing them

one by one.

Page | 3
ScriptX

Getting Started

Create new Scripts by including them as a Variation through the Design Data Form.

Scripts can also be created using the ScriptX Editor, which can be accessed via the Tools

drop-down menu in the Design Data Form.

Scripts that have already been created can be run using the Custom Variation option in the

Variations list. Scripts contained in the ScriptX folder in the Common-10 folder will be listed.

Page | 4
ScriptX

When you are establishing a new Script, you will need to determine and input the start and

end chainages, which will define the range over which the Script will be functional. All

sections between the chainage range will be processed individually.

Utilise the context menu (accessible by right-clicking) to embed elements like control

structures, object properties, and other directives.

Through the File Menu, you have the ability to store and retrieve code snippets from a file.

Language Basics

Comments

To include a comment within your code, simply prefix the line with "//". It is recommended

that you begin your script by explaining what it does.

Page | 5
ScriptX

Variables

In ScriptX, variables are established by starting a line with the variable name, followed by

"==" to set its value. Variables can take numeric values or expressions, and they can even

reference elements from Civil Site Design objects like cross section codes, alignments,

surfaces, and profiles (strings).

For instance, you could write:

Page | 6
ScriptX

In ScriptX, you can assign objects such as codes, alignments, surfaces, or profiles to variables.

This functionality is made intuitive by simply enclosing the object's name within single

quotation marks. For example, you could write myCode = 'LEB' or myAlignment = 'Widen' to

assign the corresponding object to a variable. ScriptX intelligently recognises the assignment

of an object due to the use of single quotation marks.

This feature adds a layer of adaptability to your scripts. By assigning objects to variables, you

can swiftly adapt your scripts to different designs. All it takes is changing the assigned object

once at the top of your script, and ScriptX ensures that the new assignment is correctly

referenced throughout the rest of the script. This saves time and reduces potential errors,

making it even more effortless to reuse and adapt your scripts across various design

scenarios.

For instance, you could write:

UI

ScriptX, when executed via the "Custom Variation" in the Design Data Form, can incorporate

a user interface (UI) defined within the script. This UI presents a panel of controls for user

interaction. The UI elements include various types like code selectors, surface and alignment

combos, profile selectors, value inputs, boolean toggles, and chainage inputs. Each element

is structured with a specific type, a default value, and an accompanying prompt. User

selections from these UI elements are captured and stored in variables.

Page | 7
ScriptX

Below are examples of how to integrate UI elements into your script:

Page | 8
ScriptX

Control Structures

If statement

The ‘if’ statement in ScriptX is a fundamental construct for implementing conditional logic

within your scripts. It evaluates a specified condition and, based on the outcome, decides

whether to execute a block of code or not. An “if” statement begins with the keyword "if",

followed by a variable and a logical operator, and finally, another variable. The logical

operator can be one of the following: "=", "!=", "<", ">", "<=", or ">=". If the condition

evaluates to true, the script will execute the block of code following the if statement up to

the matching "end". If the condition is false, the script skips the code block under the if

statement and continues execution from the line following "end". This allows for complex

and dynamic control flow within your scripts.

For instance, you could write:

Please note that "if" statements are not designed to process complex expressions directly. If

you need to utilise a complex calculation within an "if" statement, you should first perform

this calculation and store the result in a variable. Then, you can reference this variable within

the "if" statement. This approach will ensure proper handling and accuracy of your

conditional logic.

Page | 9
ScriptX

For loop

The ‘for’ loop in ScriptX provides a way to execute a block of code repetitively over a

defined sequence of numbers. It follows the syntax

for <variableName> = <startValue> To <endValue> Step <stepValue>

Here, <variableName> is the name of the variable that will hold the current iteration value.

<startValue> is the initial value from where the loop starts, and <endValue> is the final value

where the loop should end. <stepValue> is the increment applied in each iteration. Inside the

'for' loop, the code will execute repeatedly, with the <variableName> taking on each value

in the range from <startValue> to <endValue>, increasing by <stepValue> each time. The

loop ends when the <variableName> exceeds the <endValue>. Always end the for-loop

block with the work ‘loop’.

For instance, you could write:

Page | 10
ScriptX

Remember, always end a for-loop with the word “loop” and always end an “if” statement

with the word “end”.

All lines of the script will highlight red if there is a major syntax error.

Civil Site Design Object Properties

In ScriptX, you can access a wide range of Civil Site Design (CSD) properties within your

scripts. These properties provide useful information about the current state of your design

and can be utilised to make dynamic adjustments based on existing conditions. For instance,

you can retrieve properties related to elevation levels, chainage values, slope information,

and more. Leveraging these properties within your scripts enables you to create complex,

adaptive scripts that can react to the nuances of your specific design. Keep in mind, these

properties are inherently read-only. To modify codes related to your properties, you would

use commands or functions within your script.

Page | 11
ScriptX

Code

To access a property associated with a cross section code, you'll need to use the code's

name, followed by a period (".") symbol, and then the specific property name. This notation

allows you to directly reference and manipulate properties tied to the particular cross section

code.

Example: LEB.Width

The “Depth” property requires an additional argument. In this case, the argument is the

name of the surface. If a property requires multiple arguments, then the (“|”) symbol is used

to split the arguments.

Example: LEB.Depth[NS]

Property Description Notes

Level The level of the code

Width The distance of the code

from the last code

Slope The slope of the code from

the last code. For example,

LEB might have a slope

value of -3.

Codes in CSD can be added

either with slope or vertical

distance. If the code was

added using height, then

use the height property.

Height The height (vertical distance)

of the code from the last

code.

Codes in CSD can be added

either with slope or vertical

distance. If the code was

added using slope, then use

the slope property.

Offset The offset distance

calculated from the main

alignment. A negative offset

will mean the code is left of

the alignment.

Page | 12
ScriptX

Depth The depth calculated from a

specified surface.

Example: LEB.Depth[NS]

Alignment

When you're making a reference to an alignment, always enclose the name within single

quotation marks (' '), placing these symbols at both the beginning and the end of the name.

Example: ‘My Alignment’.Offset

Property Description Notes

Offset The offset distance from the

current section

Chainage The “shifted chainage” from

the location of the current

section

OffsetAtChainage The offset distance at a

defined

Profile (CSD String)

There are two distinct methods for referencing profile data. One approach is to reference

properties directly from the profile itself. Alternatively, you can reference properties from a

specific code that resides on the profile.

Direct from a Profile

Example: ‘My Profile’.Grade

Property Description Notes

Offset The offset distance from the

main alignment at the

current section.

Chainage The “shifted chainage” from

the location of the current

section

Page | 13
ScriptX

Level The level of the profile

calculated at the shifted

chainage

Grade The vertical grade of the

profile calculated at the

shifted chainage

Depth The level of the profile

calculated at the shifted

chainage minus the surface

level of the specified surface

‘My Profile’.Depth[NS]

Referencing a code from a Profile

Example: ‘My Profile’|LEB.Level

Property Description Notes

Level The level of the code

calculated at the shifted

chainage

Offset The offset distance of the

code from the profile

alignment

CLOffset The offset distance from the

main alignment at the

current section to the profile

alignment

Chainage The “shifted chainage” from

the location of the current

section

Depth The level of the code

calculated at the shifted

chainage minus the surface

level of the specified surface

‘My Profile’|LEB.Depth[NS]

Surface

Example: ‘NS’.Level[-3.5]

Property Description Notes

Level The level of the surface

along the section at the

offset specified.

‘NS’.Level[-3.5]

The value -3.5 represents

the offset. A negative offset

means left of the alignment.

Page | 14
ScriptX

OffsetFromProjection This feature enables users to

project from a specified

offset and level at a given

slope to determine the

intersection with the surface.

If an intersection is detected

with the surface, the

corresponding offset value

is returned as the result.

Argument 1: Start Offset

Argument 2: Start Level

Argument 3: Slope

‘NS’. OffsetFromProjection[-

4|450|50

This example will find a

surface intersect from offset

-4 and elevation 450 at a

slope of 50%. The offset will

be returned.

LevelFromProjection This feature enables users to

project from a specified

offset and level at a given

slope to determine the

intersection with the surface.

If an intersection is detected

with the surface, the

corresponding level value is

returned as the result.

Argument 1: Start Offset

Argument 2: Start Level

Argument 3: Slope

‘NS’. LevelFromProjection[-

4|450|50

This example will find a

surface intersect from offset

-4 and elevation 450 at a

slope of 50%. The level will

be returned.

Utilities

Example: Utils.SlopeBetweenPoints[-3.5|450|-2|425

Property Description Notes

SlopeBetweenPoints Calculate the slope between

two points. X = Offset and Y

= Chainage. The slope is

returned as a percentage.

Utils.SlopeBetweenPoints[-

3.5|450|-2|425

Argument 1: Offset 1

Argument 2: Level 1

Argument 3: Offset 2

Argument 4: Level 2

OffsetFromProjection This functionality allows

users to identify the point of

intersection between two

line segments. Each

segment is characterised by

its offset, level, and slope.

Utils. OffsetFromProjection[-

4|450|50|-2|440|50

Argument 1: Start Offset 1

Argument 2: Start Level 1

Argument 3: Slope 1

Page | 15
ScriptX

The resulting intersection

point is provided in the form

of an offset.

Argument 4: Start Offset 2

Argument 5: Start Level 2

Argument 6: Slope 2

LevelFromProjection This functionality allows

users to identify the point of

intersection between two

line segments. Each

segment is characterised by

its offset, level, and slope.

The resulting intersection

point is provided in the form

of a level.

Utils. LevelFromProjection[-

4|450|50|-2|440|50

Argument 1: Start Offset 1

Argument 2: Start Level 1

Argument 3: Slope 1

Argument 4: Start Offset 2

Argument 5: Start Level 2

Argument 6: Slope 2

Commands

ScriptX commands, or functions, serve as the building blocks to shape and modify cross-

sectional characteristics within the system. These commands provide you with a powerful

toolkit to perform a wide array of actions, ranging from inserting new codes, altering existing

ones, to deleting unneeded codes from the cross section.

Aside from these manipulation functions, ScriptX also includes other essential commands to

aid in script management and flow control. For instance, the "exit" command offers a clean,

immediate termination of a script, allowing for greater control over the execution process. By

leveraging these commands effectively, users can create intricate scripts that can accurately

cater to diverse cross-sectional design needs.

The easiest way to add commands is by using the right-click menu.

Page | 16
ScriptX

Example: InsertAfter LWALL|LFPI|.001|2

Insert

Command Description Arguments

InsertAfter Inserts a new code

after the specified

code.

Argument 1: New code

Argument 2: After Code (to

position the new code)

Argument 3: New width

Argument 4: New slope

InsertCode Inserts a new code

before the specified

code.

Argument 1: New code

Argument 2: Before Code

(to position the new code)

Argument 3: New width

Argument 4: New slope

InsertCodeWithVertical Inserts a new code

before the specified

code. The code is

inserted with a

vertical distance

(height value) as

opposed to a slope

value.

Argument 1: New code

Argument 2: Before Code

(to position the new code)

Argument 3: New width

Argument 4: New vertical

distance (height)

InsertCodeEnd Inserts a new code

at the end of the

template (before

the batter).

Argument 1: New code

Argument 2: New width

Argument 3: New slope

InsertCodeEndWithVertical Inserts a new code

at the end of the

template. The code

is inserted with a

vertical distance

(height value) as

opposed to a slope

value.

Argument 1: New code

Argument 2: New width

Argument 3: New vertical

distance (height)

Page | 17
ScriptX

Delete

Command Description Arguments

DeleteCode Deletes the

specified code from

the cross section

Argument 1: Code to

delete

DeleteOutside Deletes all codes

outside (after) the

specified code from

the cross section

Argument 1: Reference

code

Modify

Command Description Arguments

SetCodeOffsetLevel Sets a code’s offset

and level to

specified values

Argument 1: Code to

modify

Argument 2: New offset

Argument 3: New level

SetCodeWidth Sets a code’s width Argument 1: Code to

modify

Argument 2: New width

SetCodeWidthIncrement Increments the

width of the

specified code

Argument 1: Code to

modify

Argument 2: Width

increment

SetCodeSlope Sets a code’s slope Argument 1: Code to

modify

Argument 2: New slope

SetCodeSlopeIncrement Increments the

slope of the

specified code

Argument 1: Code to

modify

Argument 2: Slope

increment

Page | 18
ScriptX

Other

Command Description Arguments

SetPlotFlags Used when

inserting new

codes. Sets whether

the plot flag of new

codes is set to ‘Y’

or ‘N’

Example:

SetPlotFlags Y

SetLog Initialises a log file

to be created. This

is useful when

working on

creation of script.

Comment out this

line when the script

is used in

production to avoid

performance issues

Example:

SetLog D:\Logger.log

Print Prints a message to

the log

Example:

Print Hello

ShowLog Opens the log file

in your default

notepad

Exit Force exit of the

current script

SetABS Sets a variable’s

value to be the

absolute value

Example:

X == -3

SetABS X

(X will be ‘3’)

Known Variables

The software retains a set of predefined variables, allowing them to be conveniently

referenced within the script. Users don't have to undertake the task of initialising these

variables themselves, as the system automatically takes care of this aspect.

Page | 19
ScriptX

Variable Description

StartChainage The start chainage

of the script

EndChainage The end chainage

of the script

Chainage The current

chainage of the

section being

processed

vcLevel The VC level of the

current string being

processed at the

current section

vcGrade The VC grade of

the current string

being processed at

the current section

Examples

Override Code Slope

// Override slope behind kerb

newSlope == 7

SetCodeSlope LFPI|newSlope

Widen Code to Alignment with Shift

// Widen LEB code to alignment and shift offset

newOffset == 'Widen'.Offset

// Set shifted offset value

shiftedOffset == 1

// Calculate new offset

newOffset == newOffset + shiftedOffset

// Calculate new level

newLevel == vcLevel - (newOffset * (LEB.Slope / 100))

// Apply new offset and level to LEB

SetCodeOffsetLevel LEB|newOffset|newLevel

Page | 20
ScriptX

Set Footpath to Surface with Slope

// Set footpath to match surface at slope from LBK

slope == 50

newOffset == 'NS'.OffsetFromProjection[LBK.Offset|LBK.Level|slope
newLevel == 'NS'.LevelFromProjection[LBK.Offset|LBK.Level|slope

SetCodeOffsetLevel LFPI|newOffset|newLevel

Benching

// Add some benching behind the kerb

// Set dimensions for benching

width == 1
height == .5

// Turn off plot flags

setplotflag N

// Delete all codes after LBK

deleteoutside LBK

// Create benching and stop when at surface level

for i = 0 to 10 step 1

if i = 0

// Set initial heights because wall does not exist

wallLevel == LBK.level
wallOffset == LBK.offset
newWallOffset == LBK.offset - width

else

wallLevel == LWALL.level
wallOffset == LWALL.offset
newWallOffset == LWALL.offset - width

end

surfaceLevel == 'NS'.level[newWallOffset]
distanceToSurface == surfaceLevel - wallLevel

// Create wall if in cut

if wallLevel < surfaceLevel

if distanceToSurface < height

newHeight == distanceToSurface

insertcodeendwithvertical LBASE|width|0

Page | 21
ScriptX

setplotflag Y
insertcodeendwithvertical LWALL|.001|newHeight
setplotflag N

exit

else

insertcodeendwithvertical LBASE|width|0

setplotflag Y
insertcodeendwithvertical LWALL|.001|height
setplotflag N

end

else

exit

end

loop

Information From the Developer

• ScriptX enables the computation of expressions while working with variables.

However, please note that expression evaluation is not supported within "If"

statements or "For" loops.

• While ScriptX supports nested "If" statements, it's advised to refrain from using

overly complicated nested structures to ensure readability and smooth execution. It's

important to note that any block of code situated between "If" statements without

an accompanying "Else" or "End" will not be executed.

• Always check your scripts for errors before running them. Unexpected behaviours or

program crashes can occur from syntax mistakes, undeclared variables, mismatched

'If'-'End' statements, or poorly structured loops.

• Utilise comments generously in your scripts. Not only will they help others

understand your code better, but they will also serve as reminders for you if you need

to revisit the code after some time.

• Be mindful of the efficiency of your scripts. Nested loops and redundant operations

can significantly slow down the execution of the scripts.

• Should you create a script that you believe could be beneficial to other Civil Site

Design users, we strongly encourage you to reach out to us. We are always interested

in collaborative efforts and value the sharing of resources within our user community.

